Applying Constraint Satisfaction
Techniques to Job Shop Scheduling

Cheng-Chung Cheng and Stephen F. Smith ! “ :

CMU-RI-TR-95-03

19950425 036

Carnegle Mellon Unlwersuy

- _The Robotlcs Inst1tute

| . echmcal Report

— ‘

Applying Constraint Satisfaction
Techniques to Job Shop Scheduling

Cheng-Chung Cheng and Stephen F. Smith '
CMU-RI-TR-95-03

Mt T T R e
FI AR ISR

The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Accesion For

©1995 Carnegie Mellon University | NTIS CRA& %

DTIC TAB
Unannounced O

January 1995 Justification

By

Distribution]

Availability Codes

] Avail and|or
Dist Special

A-(

1This research has been sponsored in part by the National Aeronautics and Space Ad-
ministration, under contract NCC 2-531, by the Advanced Research Projects Agency under
contract F30602-90-C-0119 and the CMU Robotics Institute.

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

Abstract

In this paper, we investigate the applicability of a constraint satisfaction problem
solving (CSP) model, recently developed for deadline scheduling, to more commonly
studied problems of schedule optimization. Our hypothesis is two-fold: (1) that CSP
scheduling techniques provide a basis for developing high-performance approximate
solution procedures in optimization contexts, and (2) that the representational as-
sumptions underlying CSP models allow these procedures to naturally accommodate
the idiosyncratic constraints that complicate most real-world applications. We focus
specifically on the objective criterion of makespan minimization, which has received the
most attention within the job shop scheduling literature. We define an extended solu-
tion procedure somewhat unconventionally by reformulating the makespan problem as
one of solving a series of different but related deadline scheduling problems, and embed-
ding a simple CSP procedure as the subproblem solver. We first present the results of an
empirical evaluation of our procedure performed on a range of previously studied bench-
mark problems. Our procedure is found to provide strong cost/performance, producing
solutions competitive with those obtained using recently reported shifting bottleneck
search procedures at reduced computational expense. To demonstrate generality, we
also consider application of our procedure to a more complicated, multi-product hoist
scheduling problem. With only minor adjustments, our procedure is found to signif-
icantly outperform previously published procedures for solving this problem across a

range of input assumptions.

Contents
1 Introduction

- 2 CSP Scheduling Models and the Job Shop Deadline Problem
2.1 Problem Representation
2.2 The PCP Procedure

2.3 More Efficient, Approximate Procedures
3 MULTI-PCP

4 A Benchmark Performance Study
4.1 Computational results on the small benchmark problems

4.2 Computational results on the large benchmark problems

5 More Complicated Problem Formulations
5.1 The Hoist Scheduling Problem
5.2 Representation as a Constraint Graph
53 PCP Extensions v v v v v v ittt e e e e e e
54 Performance Results o .
54.1 Yih's Approach o
5.4.2 A Multi-PCP Implementation for Hoist Scheduling
5.4.3 Sensitivity to Relative Hoist Speed

5.4.4 Sensitivity to Duration Flexibility

6 Summary and Conclusion

10

10

12
13
15

18
19
20
21
22
23
24
25
26

28

List of Figures

1
2
3

Basic CSP Search Procedure
Constraint Graph for simple 2 job, 2 machine problem
The Multi-PCP procedure

Mean % deviation from optimal solution for increasing job/machine ratio
on small benchmark problems

Mean % deviation from best solution for increasing job/machine ratio
on large benchmark problems

Example 1
The constraint graph for example 1

Solution improvement rates for increasing ratio of mean processing time
tohoistspeed L L

Solution improvement rates as processing time flexibility is varied

i1

List of Tables

10

% deviation from optimal solution for Multi-PCP, SB1, SB3, and SB4
across small benchmark problem categories

CPU time (in seconds) for Multi-PCP, SB1, SB3, and SB4 across small
benchmark problem categories

% deviation from the best solution for Multi-PCP and SB1 across large
benchmark problem categories

Mean and standard deviation of CPU seconds for procedures, Multi-
PCP and SBI, performed on the large benchmark problems.

Makespan results for small benchmark problem set
% deviation from optimal solution for small benchmark problem set . .
Computation times (in seconds) for small benchmark problem set

Makespan results for large benchmark problemset
% deviation from best solution for large benchmark problem set

Computation times (in seconds) for large benchmark problem set

111

1 Introduction

The problem of job shop scheduling to minimize makespan has been a subject of exten-
sive investigation over the years and represents one of the most well-developed areas of
deterministic scheduling theory. However, with few exceptions, research on job shop
makespan minimization has been restricted to solution of relatively small problems
under somewhat idealized representational assumptions. This is due, in large part,
to a methodological bias toward development of optimal solution procedures. Our fo-
cus in this paper is on techniques for solving large job shop problems. Like several
other recent efforts (Adams et al., 1988; Storer et al., 1992; Balas et al., 1993), we
give up the guarantee of optimal solutions and instead concentrate on the development
of efficient solution procedures that tend to optimize rather well. Our specific objec-
tive is to explore the potential of “constraint-posting” scheduling frameworks, which
have originated from research in constraint satisfaction problem-solving (CSP) in the
field of Artificial Intelligence, as a means for formulating and solving large makespan
minimization problems. Generally speaking, CSP models would seem to offer an at-
tractive approach to job shop scheduling problems, since they naturally accommodate
more complex problem formulations (e.g., involving bounded-interval separation con-
straints between job steps, flexible duration constraints, sequence-dependent setups),
and support a variety of systematic and local search techniques.

Job shop makespan minimization is a challenging problem. Though efficient, poly-
nomial time solutions have been found for selected, restrictive versions of the prob-
lem, (e.g., two jobs, two machines (Jackson, 1956); two machines and unit processing
times (Hefetz and Adiri, 1982)), it is well known that general problem formulations
are strongly NP-hard. Work on optimal solution procedures for general makespan
problems has focused most heavily on the development of implicit enumeration, or
branch and bound, algorithms (Balas, 1969; Charlton and Death, 1970; Schrage, 1970;
Florian et al., 1971; Lageweg et al., 1977; Barker and McMahon, 1985; Carlier and
Pinson, 1989; Applegate and Cook, 1991; Brucker et al., 1992). This line of work has
shown steady progress. The notorious 10-job, 10-machine problem originally posed by
(Fisher and Thompson, 1963) was finally optimally solved by implicit enumeration in
1989 (Carlier and Pinson, 1989), and a more efficient branch and bound solution to
this problem was subsequently reported in (Brucker et al., 1992). Yet, this improved
solution procedure was not able to solve larger 20-job, 10-machine problems (running
for over 3 days on a Sun 4/20 workstation). As observed by (Lawler et al., 1989), the
applicability of implicit enumeration schemes is limited to relatively small problems,
and their performance is quite sensitive to particular problem instances and initial
upper bound values.

Other research has investigated heuristic approaches. Simple priority dispatching
algorithms are the most representative and the most widely used in practical envi-
ronments. (For a general introduction to priority rules, see (Panwalker and Iskander,

1977).) While dispatching algorithms are extremely fast and easy to implement, there
are also drawbacks. The performance of any given rule is typically quite sensitive to
problem characteristics, and it is generally quite difficult to find one that dominates in
any particular environment. Such procedures are also susceptible to very poor perfor-
mance in certain circumstances, due to the myopic nature of their decision-making.

With the rapid increase in computing power in recent years, a growing body of
research has focused on development of more sophisticated heuristic methods, which
incorporate various forms of search and aim at striking a better cost /performance trade-
off than the extremes that are provided by dispatch and optimal solution procedures.
One notable approach, reported in (Adams et al., 1988; Balas et al., 1993), empha-
sizes bottleneck tracking as a heuristic methodology for integrating optimal solutions
to simpler, one-machine subproblems. A series of shifting bottleneck procedures have
been defined which have demonstrated very strong performance on a range of previ-
ously published benchmarks, and provide a continuum of increasingly more accurate
solution procedures at increasing computational expense. Other work has explored the
use of various local search techniques as a basis for approximate solution, including
simulated annealing (Matsuo et al., 1988; van Laarhoven et al., 1992), tabu search
(Dell’ Amico and Trubian, 1991; Taillard, 1993), genetic algorithms (Della Croce et al.,
1992), and general neighborhood search (Storer et al., 1992). This work has also
produced strong approximate results on previously studied benchmarks; it has also in-
vestigated and provided benchmark results for significantly larger makespan problems
(Taillard, 1993).

In this paper, we propose a new heuristic procedure for solving job shop makespan
minimization problems. Our approach is somewhat unconventional. We start from a
base procedure called PCP (Precedence Constraint Posting) (Smith and Cheng, 1993),
previously developed for efficient heuristic solution of job shop deadline scheduling
problems. We reformulate the makespan problem as one of solving a series of different
but related common deadline problems, and define an extended procedure, Multi-PCP,
which employs PCP as a subproblem solver. PCP has three attractive properties in this
context: (1) it relies on simple, computationally inexpensive CSP heuristics and thus
is quite efficient, (2) it performs only a fixed amount of search, making its run time a
predictable function of problem size parameters, and (3) the procedure can be straight-
forwardly generalized to accommodate more complex scheduling problem formulations.
Our hypothesis is that CSP scheduling models such as PCP can provide a basis for
heuristic makespan minimization procedures that offer good cost/performance and, at
the same time, naturally extend to incorporate the more idiosyncratic constraints that
must be enforced in many application environments.

To test the viability of our hypothesis, we first analyze the performance of Multi-
PCP on previously studied benchmark problems, using the above mentioned shifting
bottleneck procedures as a comparative base. On classical (small) benchmark prob-
lems, we find Multi-PCP to perform, on average, better than SB1 (the most efficient

but least accurate shifting bottleneck procedure) and close to SB3 (more effective and
more costly) with computation times equivalent to SB1. Closer analysis of results in-
dicates that the relative performance of Multi-PCP depends significantly on the ratio
of number of jobs to number of machines in the input problem; for problems with low
job to machine ratios, Multi-PCP is found to consistently outperform SB1, in several
cases outperform SB3, and, on a few problems, outperform all shifting bottleneck pro-
cedures. Conversely, Multi-PCP is found to be less effective on problems with high job
to machine ratios. These performance trends are further confirmed through analysis of
SB1 and Multi-PCP on more recently generated (larger) benchmark problems. How-
ever, at larger problem size levels, the sensitivity of SB1 to characteristics of specific
problem instances also becomes much more apparent; computation times of SB1 are
found to vary significantly from problem instance to instance, and the version of SB1
tested was unable to solve all problem instances. The computational cost of Multi-
PCP, in contrast, is seen to be quite predictable and consistently much lower within
all problem size categories.

To demonstrate the more general applicability of Multi-PCP, we also consider its ap-
plication to a more idiosyncratic makespan minimization problem: the multi-product,
hoist scheduling problem previously studied in (Yih, 1994). This problem is compli-
cated by the need to enforce bounded interval constraints on both operation processing
times and the allowable delay time between consecutive job steps, while additionally
accounting for the time required to position the hoist for any material transfer. We de-
velop simple extensions to the base PCP procedure to account for sequence-dependent
hoist travel times, and introduce a simple problem decomposition scheme to improve
the procedure’s computational performance. Over a range of system configurations
defined by the ratio of mean processing time to hoist speed, Multi-PCP is shown to
consistently and significantly outperform Yih’s previously reported procedure. More-
over, this performance improvement is seen to be invariant to the degree of flexibility
in the manufacturing system, as defined by the tightness of the bounded interval con-
straints.

The remainder of the paper is presented as follows. In the next section, we first
consider formulation of job shop deadline scheduling problem as a CSP and summarize
the basic PCP procedure. In Section 3, we define the extended Multi-PCP procedure
for makespan minimization. The results of our experimental study with classical job
shop scheduling benchmarks are presented in Section 4. In Section 5, we consider
application of Multi-PCP to the hoist scheduling problem. Finally, in Section 6, we
summarize major points and conclusions.

1. Apply constraint propagation to establish the current set vy of feasible values for
each unassigned variable d;

2. If vy = ¢ for any variable d, backtrack.

3. If no unassigned variables, or no consistent assignments
for all variables, quit. Otherwise,

4. Select an unassigned variable d to assign.
5. Select a value from vy to assign to d.

6. Go tostep 1.

Figure 1: Basic CSP Search Procedure

2 CSP Scheduling Models and the Job Shop Dead-
line Problem

Constraint satisfaction problem solving (CSP) has long been an area of active research
within the field of Artificial Intelligence, and increasingly, CSP models and heuristics
have been investigated as a means for solving scheduling problems (Cheng and Smith,
1994; Minton et al., 1992; Muscettola, 1993; Sadeh, 1991; Smith and Cheng, 1993).
Generally speaking, a constraint satisfaction problem (CSP) is formulated as a triple
{V,D,C}, where V is a set of decision variables, D a set of domains for the variables
in V, and C a set of constraints on two or more variables in V. Basic CSP solution
procedures construct solutions through depth first extension of partial assignments,
according to the following basic search procedure given in Figure 1. Within this search
procedure, step 1 is often referred to as consistency enforcement, and steps 3 and 4
are generally referred to as variable ordering and value ordering respectively. Specific
CSP algorithms vary in the type and level of consistency enforcement that is em-
ployed (Mackworth, 1977; Haralick and Elliott, 1980), in the mechanisms incorporated
for recovering from inconsistent search states (e.g., backjumping (Gaschnig, 1979),
dependency-directed backtracking (Stallman and Sussman, 1977), dynamic backtrack-
ing (Ginsberg, 1994)), and in the heuristics utilized for variable and value ordering.

CSP scheduling research has generally emphasized development of more specialized
algorithmic components, which take advantage of the structure of this particular class
of problems. Much of this work has focused on variations of the job shop deadline
problem. A job shop deadline problem involves synchronization of the production of n
jobs in a facility with m machines, where (1) each job j requires execution of a sequence

of operations within a time interval specified by its ready time r; and deadline d;, and
(2) each operation O; requires exclusive use of a designated machine M; for a specified
amount of processing time p;. The objective is to determine a schedule for production
that satisfies all temporal and resource capacity constraints. The job shop deadline
problem is known to be NP-Complete (Garey and Johnson, 1979).

There are different ways to formulate this problem as a CSP. Most frequently, it
has been formulated as a problem of finding a consistent set of start times for each
operation of each job. Under this formulation, there are n x m decision variables,
st;, whose possible values are sets of start times. Most work with this CSP model
has concentrated on techniques for exploiting resource capacity analysis as a means
for restricting and directing search. ”Look-ahead” heuristics for variable and value
ordering, based on repeated computation of expected resource demand over time and
identification of bottleneck intervals, have been shown to yield significant performance
improvements over general CSP heuristics (Sadeh, 1991). Various contention analysis
techniques have also been used to enhance consistency checking and early search space
pruning capabilities (Sadeh, 1991), and to improve backtracking performance (Xiong
et al., 1992). Other work has investigated the use of “iterative repair” search procedures
(in contrast to the basic constructive search framework of Figure 1), which start with
an infeasible initial solution and attempt to incrementally eliminate conflicts(Minton
et al., 1992; Zweben et al., 1990). However, such “repair” techniques have been shown
to perform rather poorly in comparison to constructive approaches (Muscettola, 1993).

The PCP scheduling framework (Smith and Cheng, 1993; Cheng and Smith, 1994)
and other recent work in CSP scheduling (Aarts and Smith, 1994; Boddy and Goldman,
1994; Harvey, 1994; Muscettola, 1993) alternatively start from a problem representation
akin to a disjunctive graph formulation (Balas, 1969). The problem is instead assumed
to be one of establishing sequencing constraints between those operations contending
for the same resource. We define a set of decision variables Ordering;; for each (O;, O;)
such that M; = M;, which can take on two possible values: O; < Oj0r O; < O;. In this
case, the search proceeds by incrementally “posting” new precedence relations into an
underlying temporal constraint graph and propagating the consequences of each new
constraint to verify consistency.

There appear to be several pragmatic advantages to this second approach. By defer-
ring commitment on specific start times until they are forced by problem constraints,
a larger set of possible extensions is retained, reducing the likelihood of arriving at
an inconsistent state. Likewise, from a solution robustness perspective, precise start
time decisions are delayed (if possible) until needed at execution time. Finally, for-
mulation as an ordering problem provides a more convenient search space In which
to operate. The basic insight underlying PCP is that the search benefits provided by
look-ahead analysis of resource contention over time can be obtained through much
simpler, local analysis of sequencing flexibility. In (Smith and Cheng, 1993), a configu-
ration of variable and value ordering heuristics based on measures of temporal slack are

shown to yield very competitive problem solving performance to currently dominant
contention-based approaches (Sadeh, 1991; Muscettola, 1993) at a small fraction of the
computational cost.

2.1 Problem Representation

The PCP scheduling model can be formalized more precisely as a type of general
temporal constraint network (GTCN) (Meiri, 1991). In brief, a GTCN T consists of
a set of variables {Xj, ..., X,,} with continuous domains, and a set of unary or binary
constraints. Each variable represents a specific temporal object, either a time point
(e.g., a start time st; or an end time et;) or an interval (e.g. an operation O;). A
constraint C' may be qualitative or metric.

A qualitative constraint C is represented by a disjunction (X; g1 X;)V...V(X; ¢x X;),
alternatively expressed as a relation set X; {qi,..., gx} X, where g; represents a basic
qualitative constraint. Three types of basic qualitative constraints are allowed:

1. interval to interval constraints - The GTCN definition of (Meiri, 1991) includes
Allen’s 13 basic temporal relations (Allen, 1983): before, after, meets, met-by,
overlaps, overlapped-by, during, contains, starts, started-by, finishes, finished-by,
and equal. For convenience, we additionally include the relations before-or-meets
and after-or-met-by, which represent the union of relation pairs (before, meets)
and (after, met-by) respectively (Bell, 1989).

2. point to point constraints - The relations identified in (Vilain and Kautz, 1986),
denoted by the set {<,=,>}, are allowable here.

3. point to interval or interval to point constraints - In this case, the 10 relations
defined in (Ladkin and Maddux, 1989) are specifiable, including before, starts,
during, finishes, after, and their inverses.

A metric constraint C is represented by a set of intervals {I1, ..., I} = {[a1, b1], ---, [ak, Ok }-
Two types of metric constraints are specifiable. A unary constraint C; on point X; re-
stricts X;’s domain to a given set of intervals, i.e. (X; € I1) V...V (X; € I}). A binary
constraint C;; between points X; and X restricts the feasible values for the distance
X;— X, te, (X;— X € L) V...V (X; — X; € I). A special time point Xy can be
introduced to represent the “origin”. Since all times are relative to Xg, each unary
constraint C; can be treated as a binary constraint Co;.}

In Section 5, we extend the above definition of qualitative, interval to interval constraints to
incorporate metric quantifiers, which is necessary to model sequence-dependent setup times. We
ignore this complication for now to simplify presentation of the basic PCP procedure.

— e ——— e

{before—or-meets,

after—or Jtmet—by} {before—Lr—meets,

after—or—met-by}

I
#.1‘———
|

} {lppJ} |
| (o= | |
} {ﬁ?ashes} {stan&)\ {f/in(shes} {
; — ‘0’ {before-or-meets) /‘O' o2
e

Figure 2: Constraint Graph for simple 2 job, 2 machine problem

A GTCN forms a directed constraint graph, where nodes represent variables, and a
edge ¢ — j indicates that a constraint Cj; between variables X; and X is specified.
We say a tuple X = (zy,...,z,) is a solution if X satisfies all qualitative and metric
constraints. A network is consistent if there exists at least one solution. Figure 2 depicts
the constraint graph for a simple 2 job, 2 machine deadline scheduling problem.

An enumerative scheme for solving a GTCN is given in (Meiri, 1991). Let a labeling
of a general temporal constraint network, T', be a selection of a single disjunct (rela-
tion or interval) from each constraint specified in T'. In the graph of Figure 2 there
are 4 possible labelings, owing to the {before-or-meets, after-or-met-by} relation sets
introduced to avoid resource contention between operation pairs (O;, 0;) and (Os, O4).
Since any basic qualitative constraint can be translated into at most four metric con-
straints (Kautz and Ladkin, 1991) (e.g., O; before-or-meets O; translates to et; < st;),
any labeling of T' defines a Simple Temporal Problem (STP) network - a metric network
containing only single interval constraints (Dechter et al., 1991). T will be consistent
if and only if there exists a labeling whose associated STP is consistent.

For any STP network, we can define a directed edge-weighted graph of time points,
Gy, called a distance graph. An STP is consistent if and only if the corresponding
distance-graph G4 has no negative weight cycles. The minimal network of the STP can
be specified by a complete directed graph, called the d-graph, where each edge, 1 — 7,
is labeled by the shortest path length, sp;;, from point ¢ to point j in G4 (Dechter et al.,
1991). An STP network can be solved in O(n®) time by the Floyd-Warshall’s all-pairs
shortest-paths algorithm, where n is the number of variables in the STP network.

Thus, a simple, complete procedure for solving a GTCN is to enumerate all labelings,
solve each corresponding STP and combine results. We can increase the efficiency
of this enumeration procedure by running a backtracking search over a meta-CSP
network, whose variables correspond to arcs in the GTCN that can be labeled in more
than one way and whose domains are simply the set of possible labelings. In the
case of the deadline scheduling problem, this leads to the set of decision variables
V = {Ordering;;} previously identified, and a worst case complexity of O(n32IV1.

2.2 The PCP Procedure

The PCP scheduling model (Smith and Cheng, 1993; Cheng and Smith, 1994) augments
this basic backtracking search procedure to incorporate simple analysis of the temporal
flexibility associated with each sequencing decision that must be made. This analysis
is utilized in two ways:

1. to specify dominance conditions that allow identification of unconditional deci-
sions and early search space pruning, and

2. to provide heuristic guidance for variable and value ordering.

Each of these extensions is summarized below.

Specification and use of dominance conditions in PCP derives directly from the
concept of Constraint-Based Analysis (CBA) originally developed in (Erschler et al.,
1976; Erschler et al., 1980). This work utilized calculations of the temporal slack
associated with an unordered operation pair to distinguish among cases where neither
ordering alternative, just one ordering alternative, or either alternative remains feasible.
For example, if slack(O; < O;) = [ft;—est;—(p;+p;) < 0 then O; cannot be sequenced
before O;. These conditions are applied to detect and post any “forced” sequencing
constraints at each step of the search, and to detect inconsistent solution states.

In (Cheng and Smith, 1994), these dominance conditions are generalized to account
for the wider range of constraints that are specifiable in a GTCN. Suppose Ordering;
is a currently unassigned variable in the meta-CSP network, and consider the d-graph
associated with the current partial solution. Let s;,€;,s;, and e; be the start and end
points respectively of operations O; and O;, and further assume sp;; is the shortest
path length from e; to s; and sp;; is the shortest path length from e; to s;. Then, four
mutually exclusive cases can be identified:

Case 1. If sp;; > 0 and sp;; <0, then O; < O; must be selected.

Case 2. If sp;; > 0 and sp;; < 0, then O; < O; must be selected.

Case 3. If sp;; < 0 and sp;; < 0, then the partial solution is inconsistent.

Case 4. If sp;; > 0 and sp;; > 0, then either ordering relation is still possible.

We note that the “slack-based” dominance conditions of (Erschler et al., 1976)
represent a special case of the above conditions; under classical job shop scheduling
assumptions (i.e., fixed processing times, simple job precedence constraints) slack(O; <
O;) = sp:j. However, many practical scheduling problems require satisfaction of more
complex temporal constraints. For instance, manufacturing processes sometimes place
limits on the amount of time that can elapse between consecutive job steps - e.g.,
if metal is heated for subsequent shaping, then shaping must occur before the metal
cools. Similarly, a chemical bath operation may not necessitate a fixed amount of
time but rather require a minimum processing time to be productive and a maximum
time to avoid damage. Under such more complex modeling assumptions, shortest path
information provides stronger dominance criteria.

The second distinguishing aspect of PCP is its use of sequencing flexibility analysis
for variable and value ordering, which dictates how the search should proceed in the
undecided states (case 4 above). Intuitively, in situations where several Ordering;;
decisions remain to be made, each with both possibilities still open, we would like to
focus attention on the decision that has the least amount of sequencing flexibility. Since
the posting of any precedence constraint is only likely to further reduce possibilities
for sequencing other operation pairs, delaying the currently most constrained decision
will only increase chances of arriving at an infeasible solution state. With respect to
making the selected ordering decision, we intuitively prefer the ordering relation that
leaves the search with the most degrees of freedom.

One very simple estimate of the sequencing flexibility associated with a given Ordering;;
is the minimum shortest path length, w;; = min(sp;j, sp;:), which gives rise to a variable
ordering heuristic that selects the Ordering;; with the minimum w;. This heuristic
makes reasonable sense; at each step, the decision which is closest to becoming forced
is taken. However, its exclusive reliance on w;; values can lead to problems. Consider
two ordering decisions Ordering;; with associated shortest path lengths sp;; = 3 and
sp;; = 100, and Orderingn with sp = 4 and spix = 4. In this case, there are only
limited possibilities for feasibly resolving Orderingy and deferring this decision may
well eliminate them, while a feasible assignment to Ordering;; is not really in any
jeopardy.

To hedge against these situations, PCP instead bases variable ordering decisions
on a slightly more complex notion of biased shortest path length. Specifically, bsp;; =
spi;/+/S and bspj; = spji/V/S are computed, where S = min{sp;;, sp;i }/ max{spij, spji}
estimates the degree of similarity between the two values sp;; and spji. The se-
quencing fexibility associated with a given decision Ordering; is redefined to be
w;; = min(bsp;;, bspji), and the decision selected during variable ordering is the deci-
sion with the minimum w;;. The value ordering heuristic utilized in PCP simply selects

9

the ordering relation implied by maz(bsp;;, bsp;i), i.e. the sequencing constraint that
retains the most temporal flexibility is posted.

2.3 More Efficient, Approximate Procedures

The dominance conditions and variable/value ordering heuristics that distinguish the
basic PCP procedure do not, of course, change the exponential worst case behavior
of the backtracking search required to guarantee completeness. Given our pragmatic
interest in solving large problems, we thus introduce two less-costly, approximate so-
lution procedures for later use. The first variant is simply defined as a backtrack-free
version of the basic PCP procedure. In particular, total reliance is placed on the ability
of the search to move directly to a feasible solution; if Case 3 above is ever encountered
(i.e., no feasible ordering for a given ordering decision), the search simply terminates
in failure (and does not produce a solution). The effectiveness of this partial solu-
tion procedure, which we will refer to as “Simple PCP” below, was demonstrated in
(Smith and Cheng, 1993) on a set of previously published CSP scheduling benchmark
problems.

We also define a second variant, referred to below as “Simple PCP with Relaxation”
which extends Simple PCP in the following manner. Whenever an ordering decision is
recognized as Case 3, the unresolvable decision is set aside, and the search is allowed
to proceed with other, still resolvable ordering decisions. Once all feasibly resolvable
decisions have been made, the set U of unresolvable (Case 3) decisions is then re-
considered. For each Ordering;; in U, deadlines d; and d; are relaxed (increased) by
|maz(sps;, sp;;)| and the corresponding precedence relation (which is now feasible) is
posted. This second approximate procedure thus always produces a solution, albeit one
that may not satisfy all original problem constraints. Both approximate procedures
can be seen to have worst case time complexity of On®|V|, where |V| is the number of
ordering decisions that must be made.

3 MULTI-PCP

While constraint satisfaction scheduling procedures such as PCP have been effectively
applied to complex deadline scheduling problems, their applicability to more com-
monly studied problems of schedule optimization is not obvious. In this section, we
focus specifically on the problem of makespan minimization and propose one possible
approach to incorporating these techniques.

Our approach is motivated by the concept of problem duality exploited in the MUL-
TIFIT algorithm (Coffman et al., 1978) in the context of multiprocessor scheduling.
Suppose that we are given an instance of a makespan problem, denoted by IIa(I) where

10

I represents the problem data associated with this problem instance. If we know the
minimum makespan for IIp(/) to be CZ ., then we can reduce Iy (I) to a special
deadline problem IIp(1,d), where each job is assigned a 0 ready time and a common
deadline d, with d = C}, .. For any d > C, ., we are assured that a feasible solution to
IIp(I,d) exists. More important, C __ defines a unique common deadline such that for
d < C? .., Ip(I,d) has no feasible solution. This dual relationship between problems
(1) and p (7, d) implies that the makespan problem IIp(I) can be reformulated
as a problem of finding the smallest common deadline, dp:n, for which IIp(7, d) has a

feasible solution.

Given an algorithm for optimally solving the deadline problem IIp(1, d), it is straight-
forward to construct an search procedure for determining d.:, (and its associated
schedule). We start with known upper and lower bounds dyy and dy, on the common
deadline d.i»; at each step, we attempt to solve IIp([,d) for d = (dy + dp)/2. If a
feasible schedule is found, dy becomes d; otherwise, d; becomes d. We continue the
search until dy = dj, retaining the schedule with the best makespan as we go.

There is a complication, however, in utilizing this binary search procedure in con-
junction with a heuristic deadline scheduling procedure. In particular, the search may
fail to yield the best solution if the deadline scheduling procedure does not ensure
monotonicity in solution results across an interval of common deadlines. This property
implies that if a feasible solution cannot be found for a given common deadline d,
then a solution will also not be found for any common deadline dy < d;, and like-
wise if a solution is found for a given d;, then a solution will also be found for any
dy > di. It is not difficult to construct examples which demonstrate that neither of
the simple, one-pass PCP procedures defined in Section 2.3 possess this property, and
consequently the assumptions underlying use of binary search are no longer valid. For
this reason, we instead define our extended makespan minimization procedure in terms
of a more conventional k-iteration search; the approximate PCP procedure (either vari-
ant) is applied & times with different common deadlines evenly distributed between d,
and dy. While k-iteration search obviously also provides no guarantee of finding the
optimal solution, empirical analysis has indicated that, with proper selection of &, use
of k-iteration search leads to consistently better makespan minimization performance.

The only remaining issue concerns initial establishment of upper and lower bounds
on dpmin. A lower bound dj, is provided by the procedure originally described in (Flo-
rian et al., 1971), where each machine is sequenced independently in order of earliest
operation start times and the maximum job completion time is then selected. An up-
per bound dy can be obtained through application of one or more priority dispatch
rules. In the experiments reported below, a set of six priority rules - SPT, LPT, LFT,
EFT, MOR, and LOR - were applied, taking the best makespan generated as dy. The
complete algorithm, referred to as MULTI-PCP, is given in Figure 3.

11

1. Compute upper bound dy and lower bound dy.
Set Best_Makespan = dy.
Set [= 0.

2. If I > k, stop.
Otherwise, set common deadline d = dy — I(dy — dg)/k.

3. Apply PCP (either variant) and compute the makespan M.
If M < Best_Makespan, set Best_Makespan = M.
If Best_Makespan = dr,, stop. We have the optimal solution.
Otherwise, set I = I + 1. and go to 2.

Figure 3: The Multi-PCP procedure

4 A Benchmark Performance Study

In this section, we empirically analyze the performance of Multi-PCP on two sets of
job shop scheduling benchmark problems previously studied within the literature. The
first problem set, referred to below as the “small” problem set, consists of 39 job shop
problems with sizes varying from 6-job by 6-machine to 15-job by 15-machine. The first
three problems, Mt06, Mt10, and Mt20, are the long standing problems of (Fisher and
Thompson, 1963). The remainder are taken from the 40 problems originally created
by (Lawrence, 1984); of these 40 problems, we include only the 36 problems for which
optimal solutions have been obtained. The second set of benchmark problems, which
we designate as the “large” problem set, are the problems more recently defined by
(Taillard, 1993). This set consists of 80 larger job shop problems with sizes ranging
from 15-job by 15-machine to 100-job by 20-machine. For each problem in this set,
Taillard reported the “best solution” obtained with a tabu search procedure that was
run for extended time intervals.

We take as a principal comparative base, the shifting bottleneck family of proce-
dures, SB1, SB3 and SB4 (Adams et al., 1988; Balas et al., 1993), which provides a
series of increasingly more accurate approximate procedures for makespan minimiza-
tion at increasingly greater computational expense. On the small problem set, we
compare the performance of each of these procedures and Multi-PCP in terms of two
measures: % deviation of generated solutions from the optimal solution and amount
of computation time required for solution. Results for SB1 were obtained on a Sun
SPARC 10 workstation using an implementation kindly provided to us by Applegate
and Cook (for detail please see (Applegate and Cook, 1991)). Results for SB3 and
SB4 were taken from (Balas et al., 1993), with the reported Sun SPARC 330 compu-
tation times translated to reflect expected performance on a SPARC 10. Multi-PCP

12

Table 1: % deviation from optimal solution for Multi-PCP, SB1, SB3, and SB4 across
small benchmark problem categories

Multi-PCP
Job x Multi-PCP w/ Relax SB1 SB3 SB4
Machine | mean T mean o mean o mean c mean o
mt06 0.00 - 0.00 - 7.27 - 0.00 - 0.00 -
mt10 2.04 - 2.04 - 2.37 - 5.48 - 1.08 -
mt20 8.76 2.32 - 5.41 - 2.92 - 2.92 -

10 x 5 153 1581 147 146 159 184 144 2.05| 1.44 2.05
15 x5 0.00 0.00] 0.00 0.00 0.00 0.00| 0.00 0.00| 0.00 0.00
20x5 0.00 0.00 | 0.00 0.00 | 0.00 0.00| 06.00 0.00 0.00 0.00
10x10 | 244 175} 244 175 494 532 | 3.16 233 | 2.25 1.17
15x10 | 429 234 378 199} 634 260 272 191 | 2.72 191
20x10 | 3.12 265 3.12 2656 | 657 T7.26} 1.37 123 096 1.26
30x10 | 0.30 0.58) 0.30 0.58 | 0.00 0.00} 0.00 0.00{ 0.00 0.00
15x15 | 415 0.73| 415 073} 6.16 2.10| 3.09 092 3.01 0.97

Al [193 120] 1.72 1.15[301 239[151 1.056] 1.24 0.92

computation times were also obtained on a SPARC 10. All procedures considered were
implemented in C. For the large problem set, we alternatively compute the % deviation
from the best tabu search solution produced by (Taillard, 1993) as the performance
criterion. Cost/performance comparison across these problems is restricted to Multi-
PCP and SBI, since results have not been reported for SB3 and SB4 on this problem

set.

We consider the performance of two versions of the Multi-PCP procedure, defined
by incorporating either Simple PCP or Simple PCP with Relaxation as the base CSP
scheduling procedure (see Section 2.3). These two configurations are referred to below
as “Multi-PCP” and “Multi-PCP with Relaxation” respectively. In both configura-
tions, the bound & on the number of iterations performed was set to 8 for all runs.

4.1 Computational results on the small benchmark problems

Tables 1 and 2 summarize the performance results obtained on the small benchmark
problem set. Performance is indicated individually for the 3 problems of Fisher and
Thompson and aggregated according to problem size for the 36 problems of Lawrence.
Associated computation times are given in Table 2. Computation times were found to
be identical for both Multi-PCP configurations at the level of precision given in Table
2 and are thus listed only once. Detailed results for each individual problem are given
in Tables 5, 6, and 7 in Appendix A.

Considering first the performance of the two Multi-PCP configurations tested, we
see that augmenting the base PCP procedure to produce "relaxed” deadline solutions

13

10 machines

7
Multi-PCP
6 SB1
3 SB3
S 5 SB4
g2
T g 4
5 E
N 2
© L.
58 °
=
§ 2
Gt
F

Job/machine ratio

Figure 4: Mean % deviation from optimal solution for increasing job/machine ratio on
small benchmark problems

when feasible solutions are not found yielded improved solutions in only a small num-
ber of problems. In these isolated cases, however, the improvement provided by the
extended procedure was sometimes substantial; for the mt20 problem of Fisher and
Thompson, % deviation from the optimum was reduced from 8.76 to 2.32, matching
the best solution found for this problem by any of the shifting bottleneck procedures.
Since the extended Multi-PCP with Relaxation procedure incurs virtually no additional
computational cost, we restrict attention to the results obtained with this configuration
in our discussion below.

As shown in Table 1, the makespan minimization performance of Multi-PCP on
the small problem set falls within the performance continuum defined by the shifting
bottleneck procedures. On average, Multi-PCP is seen to perform better than SB1 and
very close to SB3, with SB4 yielding the best overall makespan performance. Relative
performance was found to vary across different problem subsets. On the three classic
Fisher and Thompson problems, Multi-PCP found equivalent or better solutions than
both SB1 and SB3 in all cases, and failed to match the performance of SB4 in just one
case. There is little difference in performance on the very small, 6-machine problems;
all procedures produce optimal or near optimal solutions in these problem categories.

Consideration of results on the larger, 10-machine problem categories reveals per-
haps the most significant comparative performance trend. These results are graphically
depicted in Figure 4 in terms of increasing ratio of number of jobs to number of ma-
chines in the input problem. For problems with low job to machine ratios, Multi-PCP
exhibits its strongest comparative performance. In the case of the 10x10 problem

14

Table 2: CPU time (in seconds) for Multi-PCP, SB1, SB3, and SB4 across small
benchmark problem categories

Job x Multi-PCP SB1 SB3 SB4
Machine | mean o mean o mean 2 mean o
mt06 0.05 - 0.12 - 0.78 - 1.45 -
mt10 0.38 - 0.72 - 2.21 - 7.76 -
mt20 1.38 0.28 - 1.99 - 3.62 -

10x 5 0.13 0.09] 012 0.01| 040 0.20| 0.56 0.28
15x5 0.22 026 0.15 0.02] 0.12 0.04| 0.12 0.04
20x 5 0.07 0.07| 0.16 0.03| 0.14 0.04| 0.14 0.04
10x10 | 026 0.03| 0.67 0.13} 1.61 0.16 | 3.20 0.25
15x10 | 1.04 0.10{ 1.20 0.18 | 3.41 098 5.74 2.52
20x10 | 251 0.13| 1.61 026 | 3.86 227 7.50 5.35
30x10 | 485 3.96| 2.58 058 | 413 1.76 | 413 1.76
15x15 | 1.29 0.17| 455 1.30|13.34 0.49] 26.79 1.05

Average | 1.19 0.60 | 121 0.31] 296 074] 529 141

category, Multi-PCP performed better on average than both SB1 and SB3, and very
close to SB4. Conversely, Multi-PCP was found to be less effective (comparatively)
on problems with high job to machine ratios. On the 30x10 problems (which turn out
to be the easiest 10-machine problems for all procedures), all three shifting bottleneck
procedures were able to obtain optimal solutions, whereas Multi-PCP failed to find the
optimum for 2 of the 5 problems in this category (see Table 6).

From a computational perspective, Table 2 shows that the solution times achieved
on this problem set by Multi-PCP are comparable overall to those of SB1. Table 2
also confirms the increasingly higher computational demands of SB3 and SB4; on the
15-machine problems, the average solution times for SB3 and SB4 are approximately
10 and 20 times larger (respectively) than those of Multi-PCP.

4.2 Computational results on the large benchmark problems

Table 3 extends the performance comparison of Multi-PCP and SBI to the larger
problem set of Taillard. Again, performance results are summarized by problem size
category, in this case relative to the best solutions reported by Taillard’s tabu search
procedure. Figure 5 graphically depicts average solution performance by increasing job-
to-machine ratio as before for both 15-machine and 20-machine problem categories. We
note that due to excessive memory requirements, the SB1 implementation was able to
solve only 9 of the 10 problems in each of the 50x15 and 50x20 problem sets, and was
unable to solve any of the largest 100x20 problems on our Sun SPARC10 workstation.
The average performance numbers listed in Table 3 and Figure 5 for these categories

15

Table 3: % deviation from the best solution for Multi-PCP and SB1 across large
benchmark problem categories

Multi-PCP
Job x Multi-PCP w/ Relax SB1
Machine | mean c mean o mean ol

15x15 | 574 0.74) 557 0.78 | 9.00 2.05
20x15 | 7.52 1.82 1 7.27 149 10.15 2.14
30x15 | 9.88 257 | 9.65 247 | 838 3.06
50 x 15% [7.39 231] 7.21 226 | 2.66f 1.57
20x20 | 760 154 | 733 133| 9.98 2.29
30x20 | 11.76 243 | 11.64 237 | 13.05 2.55
50 x 20« | 8.77 0.96 | 834 1.06] 5.33f 1.82
100x20 | 488 141 488 141 | -1i -

Allx [838 1.72] 814 165] 836 221

7 SB1 able to solve nine out of ten problems.
1 SB1 unable to solve any of the 100x20 problems.
* Average performance is measured with respect to problems solved by both procedures.

reflect only those problems that were successfully solved. Corresponding average com-
putation times by problem category are given in Table 4. Detailed performance on
each individual problem is given in Tables 8, 9, and 10 in Appendix A.

Ignoring the scalability problems encountered with the tested SB1 implementation,
the results at larger problem sizes make much more explicit the comparative perfor-
mance trends observed at the 10-machine problem level. Multi-PCP is seen to consis-
tently outperform SB1 at low job-to-machine ratios, while the inverse is true at high
job-to-machine ratios. Both procedures achieve increasingly better solutions at higher
job-machine ratios (consistent with Taillard’s observation that these problems are eas-
ier), but in no cases does either Multi-PCP or SBI achieve the best solutions generated
by extended Tabu search.

Examination of relative computational costs (Table 4) indicates some additional
scalability trends and tradeoffs. Multi-PCP was found to consistently produce solutions
in less computation time than SBI; the largest differential (roughly 4 times as fast)
was observed in the problem categories with the smallest job-to-machine ratios, and,
on average, Multi-PCP obtained solutions in about half as much CPU time as SB1.
Multi-PCP was also found to be much more predictable with respect to computational
cost. As shown in Table 4, the variance in Multi-PCP solution times across all problem
categories was extremely low in comparison to SBI.

It is clear that the simple heuristics embedded in Multi-PCP are too weak to com-
pete with the extended tabu search of Taillard. At the same time, Taillard’s best
solutions were obtained by running the tabu search procedure 3 to 4 times for a large,

16

(a) 15 machines

14
® Multi-PCP
12 |- < SBI1
= _5 10 —
S 3
8 ©
3 2 8
s 2
s £ 6F
QL
s £
£ 4L
2=
0 | l | \
1 2 3 4 5
Job/machine ratio
(b) 20 machines
16
14 | ® Multi-PCP
A < SBI1
12 -
§
§ ;.5: 10 - &
I
5z s
R O
- 61—
S g
= 8
S 4
2,
0 ! | | I _
1 2 3 4 5

Job/machine ratio

Figure 5: Mean % deviation from best solution for increasing job/machine ratio on
large benchmark problems

17

Table 4: Mean and standard deviation of CPU seconds for procedures, Multi-PCP and
SB1, performed on the large benchmark problems

Job x Multi-PCP SB1
Machine | mean o mean c

15x 15 1.20 0.08 5.10 1.39

20 x 15 3.42 0.33 7.63 1.06

30x15 | 11.90 0.85 | 14.68 1.72

50x 15 | 68.11 7.12 | 141.33 104.84
20 x 20 3.73 0.32 | 15.64 2.91

30x20 | 15.51 0.77 | 31.58 4.03

50x20 | 94.90 6.28 | 165.83 94.75
100 x 20 | 857.36 38.43 - -

pre-determined number of iterations ?. Given the additional (but incomplete) computa-
tional details provided in (Taillard, 1989) on incremental solution progress and account-
ing for computing hardware differences, it would appear that Multi-PCP consistently
obtains its solution in less time than it takes Taillard’s procedure to obtain a solution of
comparable quality (particularly on problems with low job-to-machine ratios). Though
this computational advantage is lowered by the more efficient tabu procedure recently
reported in (Nowicki and Smutnicki, 1994), Multi-PCP would nonetheless seem to offer
leverage as a solution seeding mechanism to such iterative search procedures.

5 More Complicated Problem Formulations

The above study relates the performance of Multi-PCP to state-of-the-art makespan
minimization procedures; perhaps somewhat surprising, it shows that Multi-PCP’s use
of a CSP scheduling model in conjunction with fairly simple search control heuris-
tics leads to respectable cost/effectiveness (although certainly not overwhelming all
previously reported results). In this section, we consider a complementary issue: the
broader applicability of CSP-based solution approaches, and Multi-PCP specifically,
to more idiosyncratic problem formulations. As indicated earlier, real-world applica-
tions are often complicated by additional temporal synchronization and resource usage
constraints, and solution procedures which rely on problem structure that is pecu-
liar to the canonical job shop problem formulation are of little use in such contexts.
CSP scheduling models, alternatively, are based on very general representational as-
sumptions and naturally extend to accommodate richer problem formulations. We

2Provisions are made for early termination upon detection of an optimal solution. As indicated in
Appendix A, optimal solutions were found for 1 of the 10 15x15 problems and for 9 of the 10 problems
in each of the 15x50 and 20x100 categories. In all other problems, there was no early termination of
the search.

18

demonstrate this generality below by applying the Multi-PCP procedure to another,
less-structured makespan minimization problem: the multi-product version of the hoist

scheduling problem studied in (Yih, 1994).

5.1 The Hoist Scheduling Problem

The hoist scheduling problem finds its origin in printed circuit board (PCB) electro-
plating facilities. In brief, a set J of jobs, J = {Ji,..., J,} each require a sequence of
chemical baths, which take place within a set M of m chemical tanks, M = {1,...,m}.
Execution of a particular chemical bath operation O; requires exclusive use of tank
m;. The processing time of any O; required for a job j is not rigidly fixed; instead
there is a designated minimum time, p", that j must stay in the tank for the bath to
accomplish its intended effect and a maximum time, p/***, over which product spoilage
occurs. All jobs move through the chemical tanks in the same order, though a given
job may require only a subset of the baths and thus “skip” processing in one or more
tanks along the way. All job movement through the facility is accomplished via a sin-
gle material handling hoist, H, which is capable of transporting a job initially into the
system from the input buffer, from tank to tank, and finally out of the system into
the output buffer. H can grip only a single job at a time, moves between any two
adjacent stations (input buffer, tanks, or output buffer) at constant speed s, and has
constant loading and unloading speeds, L and U, at any tank or buffer. The facility
itself has no internal buffering capability; thus jobs must be moved directly from one
tank to the next once they have entered the system. The objective is to maximize
facility throughput (or equivalently minimize makespan) subject to these process and
resource constraints.

Most previous work in hoist scheduling has considered simplified versions of this
problem. The single-product, hoist scheduling problem has received the most attention.
In this special case, the problem can be reduced to one of finding a minimum length
cycle of hoist operations, which can then be repeated over time; several algorithms
for generating optimal (or near-optimal) cyclic schedules have been reported (Phillips
and Unger, 1976; Lieberman and Turksen, 1981; Shapiro and Nuttle, 1988; Lei and
Wang, 1991; Armstrong et al., 1994). In (Yih and Thesen, 1991; Yih et al., 1993), a
hoist scheduling problem involving a2 multi-product facility is considered, but without
permitting variance in job routings (i.e. no tank skipping). To our best knowledge, only
(Yih, 1994) has reported procedures for solving the general hoist scheduling problem
defined above.

19

5.2 Representation as a Constraint Graph

The GTCN formalism introduced in Section 2.1 requires only slight extension to model
the hoist scheduling problem. Let’s first consider representation of the process con-
straints of any given job j. For each individual operation O; in 7’s process sequence, we
define three constraint graph nodes: two time points, representing O;’s start and end
points, and an interval, representing O; itself. A given pair of start and end points are.
related to its corresponding interval through use of the qualitative constraints starts
and finishes respectively. The values ultimately assigned to the time points of any O;
in the constraint graph will represent O;’s scheduled start and finish times.

The duration of a given operation O; is modeled by specifying a metric constraint
between its start and end points. There are two cases, corresponding to the two types
of operations that must be interleaved to process any given job. If O; is a required tank
operation, the constraint {[p[*™", p***|} is specified to enforce minimum and maximum
allowable times in tank m;. If alternatively, O; is a hoist (transport) operation, then
the constraint is instead a function of the distance to be traversed and hoist loading,
traveling and unloading speeds. The constraint {[mt,mt]} is specified in this case,
where mt = L + s * (destination; — origin;) + U. For convenience, we assume a
correspondence between a given tank’s index and its location, and assign indices 0 and
m + 1 to the system’s input and output buffers respectively to complete this mapping.

The process sequence for any given job j is specified by temporally relating the
intervals defined for 7’s constituent tank and transport operations. Since the end of
any given operation O; must, by definition, coincide with the start of O;+1, the meets
constraint is used to establish this linkage. O; meets O;y1 implies that et; = st;41. Dis-
junctive constraints on resource usage are specified as relation sets between operations
that require the same resource. Again there are two cases. For tank operations O; and
O; where m; = m;, the constraint {before, after} is introduced. Note that the relation
set used for this purpose in the canonical job shop problem, {before-or-meets, after-or-
met-by}, is not correct here, since it is physically impossible to switch between tank
operations without intermediate loading and unloading. Synchronization of competing
hoist operations is the only remaining issue. In this case, however, basic qualitative
relations are insufficient, as they do not allow us to account for the “setup” time that
may be required to position the hoist at the loading location.

To overcome this limitation, we extend our representation of qualitative constraints
to optionally include a metric quantifier. For our purposes here, it is sufficient to include
only the following two extended relations: before-or-meetsflagtime] and after-or-met-
by[lagtime], where lagtime > 0 designates a minimum metric separation between the
related intervals. Thus, whereas the constraint O; before-or-meets O; implies et; < stj,
the extended constraint O; before-or-meets[h;;] O; implies et; + h;; < st;. For each pair
of hoist operations O; and O; belonging to different jobs, we specify the constraint O;
{before-or-meetsfhi;], after-or-met-byfh;iJ} Oj, where hi; = s x |destination; — origin;|

20

H—J—? traveling speed: 1
j [loading/unloading time: 0.5

O g oL O

input tank 1 tank 2 tank 3 output
buffer buffer
[2,3] (4, 8] [3.5]
T B

[11, 14} [4, 5]

"2 -5

Figure 6: Example 1

and hj; = s |destination; — origin,|.

To illustrate, Figure 6 shows a simple example problem (taken from (Yih, 1994))
involving 2 jobs to be processed in a 3 tank system. Each operation is displayed below
the tank that is required, and gives its minimum and maximum processing times. The
corresponding constraint graph model is given in Figure 7 (with qualitative relations
abbreviated as follows: starts (s), finishes(f), meets (m), before (b), after (bi), before-
or-meets(bm), after-or-met-by (bmi)).

5.3 PCP Extensions

Given a GTCN model of a hoist problem, we can distinguish two sets of disjunctive
constraints that must be resolved during scheduling: those that relate competing tank
operations, and those relating pairs of hoist operations. In both cases, the set of possible
values that might be selected/assigned differs from the {before-or-meets, after-or-met-
by} relation set used earlier in the canonical job shop model; and proper treatment of
these extended relation sets necessitates some adjustment to the base PCP constraint
satisfaction procedure that underlies Multi-PCP.

Recall from Section 2.2, that PCP relies on shortest path lengths as a basic indicator
of sequencing flexibility. In essence, the shortest path from et; to st; for operations O;
and O;, designated sp;;, indicates the current maximum feasible separation between
these two points. In the case of a {before-or-meets, after-or-met-by} relation set, this
is a reliable accounting of remaining flexibility. If sp;; > 0 then O; before-or-meets
O; is still feasible and vice versa (providing the basis for dominance conditions); if
spi; < sp;; then there is less flexibility remaining to sequence O; before O; than there
is to do the opposite. However, in the context of sequence-dependent setups, shortest
path lengths provide only a partial and distorted estimate of sequencing flexibility.

21

{2213 {1231} {[2.21} {[4.81} {[2,21} {(3.51) {12,211

< > a Q0 O\——Pﬁf) \;j)\f——P/‘:> Q\, =0 e /;.;_) ‘\ ~)
{s}\ Fati! {s}\\ / {f} {sh\ /{f} {S}\ 0 {S}\\ S {S}\‘\ 1 {S}\\ ' {:f}
V""‘L_>‘“‘} > m Mo L wm Y w A2
L £ 9) e e e D
G \ N e Vi
e /’/ e / (bmlaLbmil2]}
o \ {om{3omi(1l} /| /P
P - | {bm[2],bmi[0]} A {b.bi} o
f \ h ! {bm[l]‘bml[:i]} /"/ // ‘ ,/,/ ’ o /
hs \, e / : o /
{bm{0},bmi[3]} // 7 (omzpomityy |/ (bmE3Lomito]) /
) - / 1/ /
1 / . i \) ' ya ,
ANV S ‘ /o /.)
| \ {bm[2],bmi[4]} \ L ,
{b [l]ib []} / \\‘,/’/ \\////,r' J‘Z// /
m mifl \ /,/ . - X // {bm[1],bmi(1]}
| SN AN Pl
} // e e / \ P // ‘)
‘: / // - -~ T N ! /
f / x T // /,>() i //
| / ' S\ (bmio)bmil2))
| / 07 tomiabmir2)) / AN ﬁ \
/ e /// / 7 7 /
S \ p
e |/ / . /

o (Og
it

(e & /A N
~a

m L) m e
5/ s) N AN AN

{[2.2]} {[11,143} {12,213 {[4.51} {[2,21}

Figure 7: The constraint graph for example 1

To solve this problem, we generalize the basic measure of flexibility in PCP to
incorporate sequence-dependent lag times. Assume h;; to be the lag time required if
O; is processed before O;, and hj; be the lag time required if O; is processed before O;
(i.e., the constraint specified in the network is O; {before-or-meetsfh;;], after-or-met-
by[h;i]} O;). We revise the dominance conditions and search control heuristics specified
in Section 2.2 by simply substituting the extended calculation (spi; — hi;) for spi;
and, likewise, substituting (sp;; — kj;) for spj;. Note that these revised definitions also
accommodate the {before, after} relation set required for synchronizing tank operations
(in which case, h;; and hj; are both set to the smallest possible temporal increment),
as well as the basic {before-or-meets, after-or-met-by} relation set (where hij, hji = 0).

5.4 Performance Results

In this section, we adapt the Multi-PCP procedure defined in Section 3 to incorporate
the extensions discussed above, and examine its performance characteristics. We fol-
low the same general experimental design of (Yih, 1994), and similarly consider hoist
scheduling in a PCB electroplating facility with 5 chemical tanks. All problems defined
consisted of 100 jobs, each with randomly generated routings and tank processing time

22

constraints, and all assumed to be simultaneously available. Since material flow is uni-
directional, differences in job routings correspond to which and how many tanks are
skipped. Experiments were conducted to evaluate performance along two dimensions
relating to facility constraints and operation: first as function of the relative speed
of the hoist to mean tank processing time, and second as a function of the degree of
flexibility provided by tank processing time constraints. To calibrate results, prob-
lems were also solved using the hoist scheduling procedure previously developed by
Yih (Yih, 1994). Both procedures were implemented in C and run on a Sun SPARC
10 workstation. Before describing the experiments in more detail and presenting re-
sults, we briefly summarize Yih’s approach and the hoist scheduling implementation
of Multi-PCP.

5.4.1 Yih’s Approach

In (Yih, 1994), two heuristic procedures for hoist scheduling are proposed and evalu-
ated. First, to provide a baseline for comparison, a simple “basic algorithm” is speci-
fied. In brief, the basic algorithm constructs a feasible schedule one job at a time, by
repeatedly extending a partial solution to include the schedule of an additional job.
In adding any given job into the schedule, only minimum tank processing times are
considered. The job’s first tank operation is tentatively scheduled to start as early as
possible and subsequent operations in the routing are sequentially checked for feasibil-
ity with respect to resource constraints. If a constraint conflict is detected (due either
to tank or hoist unavailability), the first operation is delayed by an amount sufficient to
avoid the conflict and the feasibility check is repeated. The process terminates as soon
as a conflict free start time for the job is found, and the partial solution is extended to
include the corresponding schedule.

The second proposed procedure, which we will refer to below as the “Yih94” algo-
rithm, extends the basic algorithm to exploit any scheduling flexibility that is provided
by maximum tank processing time constraints. Specifically, the job scheduling cycle is
augmented as follows. Upon detection of a hoist availability conflict during the feasi-
bility checking process, a backward pass is first made through the routing to enlarge
the durations of previous tank operations where maximum processing time constraints
permit. If the conflict is eliminated by this action, then the forward feasibility check
is resumed. If not, the job start time is delayed as before. Experimental results re-
ported in (Yih, 1994) indicated that this enhanced algorithm produced schedules with
distinguishably lower makespan than those generated by the basic algorithm across a
variety of system configurations. Owing to its simple, myopic nature, the Yih algo-
rithm also operates very efficiently; 100 job, 5 tank problems are solved in seconds with
our implementation.

23

5.4.2 A Multi-PCP Implementation for Hoist Scheduling

To adapt the Multi-PCP procedure defined in Section 3 for hoist scheduling, we aug-
ment the “Simple PCP” procedure to incorporate the extended dominance conditions
and search control heuristics discussed above, and specify new sub-procedures for deter-
mining lower and upper bounds, d;, and dy, on the common deadline interval considered
within the k-iteration search. To establish d;, we simply compute the minimum total
required processing time (including hoist operations) for each job and take the maxi-
mum. To establish dy, we run Yih’s “basic algorithm” and take the makespan of its
result. As in the job shop scheduling experiments, the number of iterations, k, is set
to 8 and not varied.

There is one further pragmatic consideration. Given the more complex structure of
the constraint graph required to model the hoist scheduling problem, it is not possible
to validly exploit the special-case, “slack-based” computations of (Erschler et al., 1976)
(see Section 2.2) as a surrogate for shortest-path length calculations within PCP (as
it is, for example, in the case of canonical job shop problem formulations).> This
significantly raises the computational overhead of constraint propagation; preliminary
experiments with smaller, 50 job, 5 tank problems were found to yield run times of
about 30 minutes.

To provide a more computationally competitive alternative to Yih’s algorithm, a
simple problem decomposition method, conceived initially by (Ashour, 1967) and ex-
tensively studied in (Hirabayashi et al., 1994), is introduced. Under this scheme, a
solution is generated by:

1. Partitioning the total set of n jobs into |n/b] subproblems with > b jobs,

2. Solving each subproblem independently with Multi-PCP to obtain |n/b] partial
schedules, and

3. Randomly combining the |n/b] partial schedules to produce an n job schedule.

In the experiments reported below, a subproblem size of b = 10 was uniformly adopted.
For these 100 job, 5 tank problems, overall solution time was about 100 seconds.

3Interestingly, the need for explicit shortest path length computations is not a consequence of the
extensions introduced to accommodate sequence-dependent setups, but is due instead the presence
of bounded interval constraints between time points, i.e., minimum and maximum processing time
constraints. Slack-based computations remain a legitimate computational simplification, for example,
in solving canonical job shop problems with sequence-dependent setups.

24

5.4.3 Sensitivity to Relative Hoist Speed

One dimension along which PCB Electroplating system configurations can vary is in
the relative speeds of hoist and tank operations. Accordingly, the sensitivity of schedul-
ing performance to this ratio provides one interesting basis for comparative analysis.
We first contrast the performance of Multi-PCP and Yih94 on problem sets designed
to vary the ratio v = p™"/s, where ™" is the mean minimum processing time of
tank operations and s is the speed of the hoist in moving between adjacent system
locations. A total of 100 problems were randomly generated according to the following
experimental design:

e For each problem, each job routing was generated by first choosing some number
of tanks to skip from U[0,4], and then selecting (without replacement) which
tanks to skip.

e 10 different problem sets, each consisting of 10 problems, were generated by
drawing minimum processing times for tank operations from the following 10
uniform distributions: U[5,15], U[15,25], U[25,35], U[35,45], U[45,55], U[55,65],
U[65,75], U[75,85], U[85,95], and U[95,105].

e For a given tank operation O;, p/**® was defined as p X p™" where p is the
tolerance factor. p was held constant at 1.0 in this experiment.

e For all problems, we assumed a hoist travel speed s of 2 and hoist loading or
unloading time of 1.5. Thus, the 10 problem sets reflect v ratios of 5, 10, 13, 20,
25, 30, 35, 40, 45, and 50.

To characterize results, we take the same approach as in (Yih, 1994); we use the
“basic algorithm” to provide a benchmark solution and compute the improvement rate

provided by both Multi-PCP and Yih94. The precise calculation is:

Basteyr — Xy

Improvement Rate = -
Basiep

where Basicys is the makespan of the basic algorithm’s solution, and Xjs is the

makespan of the solution generated by procedure X, X € {Multi-PCP, Yih94}.

Figure 8 graphically displays the average results obtained for each problem set with
Multi-PCP and Yih94, ordered by increasing v ratio. Both procedures are seen to gen-
erate the largest improvement for values of v in the range of [10,25], with improvement
rates degrading as v becomes larger or smaller. In the case of Yih94, no improvement is
obtained at either of the extreme points tested. Multi-PCP, alternatively, yields an im-
provement rate of 8% at the smallest v value, and as v becomes increasingly larger, its
improvement rate stabilizes at about 15%. Across all experiments, Multi-PCP is seen

25

30 !

|
B I'o Multi-PCP |
o Yiho4

S 20
e
g
% L P
£
g
& 101
joW
= >

- @]

[¢]
0 \ ! L | ! ! 2 :

10 15 20 25 30 35 40 45 50

Mean processing times / hoist speed

Figure 8: Solution improvement rates for increasing ratio of mean processing time to
hoist speed

to produce solutions that, on average, are 15% better (in relation to the benchmark
solution) than those obtained with Yih94.

The behavior of Yih94 at extreme ~ ratios is predictable. As the hoist is oper-
ated at increasingly slower speeds in relation to tank processing time, hoist availability
becomes an increasingly dominant constraint. The use of processing time flexibility
becomes increasingly insufficient, by itself, as a means of overcoming hoist delays, and
the behavior of Yih94 increasingly degenerates to that of the basic algorithm. Alterna-
tively, at increasingly faster relative hoist speeds, hoist availability becomes increasingly
less constraining. Opportunities to exploit processing time flexibility correspondingly
decrease, again leading to increased reliance on the basic algorithm.

5.4.4 Sensitivity to Duration Flexibility

To consider how processing time flexibility affects scheduling performance, the initial
100-problem experimental design was repeated for three additional settings of p, the
tolerance parameter used to determine p/*** for any generated tank operation O;. Fig-
ures 9 (a) and (b) show the performance results obtained with Multi-PCP and Yih94,
respectively, for problems generated with p settings of 0.0 (no flexibility), 0.5, 1.0 (the
original setting) and 2.0.

As expected, the performance of both procedures is seen to improve as the duration
flexibility provided by minimum and maximum processing time constraints is increased.
Multi-PCP does a better job of exploiting duration flexibility across all configurations.
At v = 15, the difference is most extreme. With this system configuration, Multi-PCP

26

(a) Multi—PCP

tolerance factor:
30 o 0.0
. s 0.5
\ o 1.0
g L 20
'?; 20
5
g
L3
-
2
E 107
O | | I 1 |
5 10 15 20 25 30 35 40 45 50
Mean processing times / hoist speed
(b) Yih94
1
- tolerance factor:
30 o 0.0
2 0.5
- B o 1.0
§ & 2.0
% 20 [~
5
= —
5 ‘
2
£ 10
0 4 5

5 10 15 20 25 30 35 40 45 50
Mean processing times / hoist speed

Figure 9: Solution improvement rates as processing time flexibility is varied

obtained a 30% increase in solution improvement rate as p is raised from 0 to 2 while the
corresponding increase in improvement rate observed for Yih94 over the same problem
sets was just 6%. Interestingly, Multi-PCP is found to improve the benchmark solution
even in absence of processing time flexibility (p = 0) for all problem sets except the
extreme v = 5 problem set, where hoist availability is most problematic; in this case
Multi-PCP’s improvement rate increases to 10% as hoist availability becomes less and
less constraining. Yih94, of course, yields no improvement at p = 0, since it degenerates
to the basic algorithm when there is no processing time flexibility.

More generally, the results obtained in these experiments illustrate the difficulty
of accommodating complex, interacting constraints within scheduling procedures that
proceed via explicit commitment to specific start times. In the case of the Yih94
algorithm, a priori design decisions are made as to when it is productive to extend
processing times versus delay job starts and what specific extend or delay decisions
should be taken. Most frequently, however, the best decision actually involves some
combination of these two alternatives. This tradeoff is not considered by Yih94, and,
while extensions to consider additional types of decisions would appear possible, it is not
clear how one could extend such a “fixed times” solution approach to generally address
this tradeoff in a cost/effective manner. Multi-PCP, alternatively, does not suffer from
this limitation. By operating instead in the space of sequencing decisions, this tradeoff
is naturally and directly considered. There is no need to design the algorithm to reason
explicitly about the types of constraints involved; decision-making can instead be based
strictly on their emergent influence on the evolving partial solution.

6 Summary and Conclusion

In this paper, we have examined the applicability of constraint satisfaction problem
solving (CSP) techniques to the long studied problem of makespan minimization, argu-
ing their utility as a basis for the design of cost/effective scheduling procedures which
naturally accommodate the idiosyncratic constraints that complicate real-world ap-
plications. We reformulated the makespan minimization problem as a search for the
least feasible common deadline d, and proposed a simple search procedure to approx-
imate d by solving a series of deadline scheduling problems. A CSP procedure called
PCP, which constructs a schedule by incrementally adding precedence constraints to a
temporal constraint graph representing the input problem, was embedded as the core,
deadline scheduling sub-procedure. The overall procedure, referred to as Multi-PCP,
was then empirically evaluated to assess its performance characteristics.

To calibrate its cost/effectiveness as an approximate solution procedure, the perfor-
mance of Multi-PCP was contrasted with that of recently developed shifting bottleneck
and tabu search procedures on previously studied benchmark problem sets. Despite its
fairly simple heuristics, Multi-PCP was found to perform quite well. On the Fisher and

28

Thompson/Lawrence benchmarks, Multi-PCP produced overall results comparable to
SB3 at a computational cost comparable to SB1 (Applegate’s version). Multi-PCP was
found to perform best on problems with low job-to-machine ratios, achieving perfor-
mance comparable to SB4 on the 10x10 problems. On the larger Taillard benchmarks,
Multi-PCP’s sensitivity to job-to-machine ratio was further confirmed; on problems
with low ratios, Multi-PCP consistently produced better solutions than Applegate’s
SB1 (the only shifting bottleneck procedure we were able to compare), while the in-
verse was observed at higher ratios (for those problems that the SB1 implementation
was able to successfully solve). In no cases, did Multi-PCP (or SB1) produce so-
lutions as good as those obtained with Taillard’s tabu search procedure. However,
Multi-PCP solutions were obtained in less time than it took to generate comparable
solutions within the tabu search, suggesting its potential as a seeding mechanism for
such extended search procedures.

To demonstrate the generality of the approach, we also considered application of
Multi-PCP to the multi-product, hoist scheduling problem previously studied by Yih.
This problem requires satisfaction of a more complicated set of constraints than does
the canonical job shop scheduling formulation of the benchmark problems, including
simultaneity in the starts and ends of interleaved material transport and manufacturing
operations, non-rigid processing times, and sequence-dependent hoist travel times. It is
in this problem context that the power of the underlying constraint satisfaction model
is most evident. With only minor extension to account for sequence-dependent setups,
Multi-PCP was shown to be directly applicable to this more idiosyncratic makespan
minimization problem. Though computational considerations necessitated use of a
problem decomposition scheme to achieve realistic problem scale, experimental re-
sults nonetheless indicated uniform, sizable improvement in solution quality over other
known solution procedures across a wide range of system configurations.

References

Aarts, R. J. and Smith, S. F. (1994). A high performance scheduler for an automated
chemistry workstation. In Proceedings of 1994 European Conference on Artificial
Intelligence, Amsterdam.

Adams, J., Balas, E., and Zawack, D. (1988). The shifting bottleneck procedure for
job shop scheduling. Management Science, 34(3):391 — 401.

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications
of the ACM, 11(26):832-843.

Applegate, D. and Cook, W. (1991). A computational study of the job-shop scheduling
problem. ORSA Journal of Computing, 3(2):149 - 156.

29

Armstrong, R., Lei, L., and Gu, S. (1994). A bounding scheme for deriving the minimal
cycle time of a single-transporter n-stage process with time-window constraints.
European Journal of Operational Research, 78:130-140.

Ashour, S. (1967). A decomposition approach for the machine scheduling problem.
International Journal of Production Research, 6:109-122.

Balas, E. (1969). Machine sequencing via disjunctive graphs: An implicit enumerated
algorithm. Operations Research, 17:941-957.

Balas, E., Lenstra, J. K., and Vazacopoulos, A. (1993). The one machine problem
with delayed precedence constraints and its use in job shop scheduling. Technical
report, Graduate School of Industrial Administration, Carnegie Mellon University,

#£MSRR-589(R).

Barker, J. and McMahon, G. B. (1985). Scheduling the general job-shop. Management
Science, 31(5):594-598.

Bell, C. E. (1989). Maintaining project networks in automated artificial intelligence
planning. Management Science, 35(10):1192 - 1214.

Boddy, M. S. and Goldman, R. P. (October, 1994). Empirical results on scheduling
and dynamic backtracking. In Proceedings of the 3rd International Symposium on
Artificial Intelligence, Robotics and Automation for Space, Pasadena, CA.

Brucker, P., Jurisch, B., and Sievers, B. (1992). A branch and bound algorithm for
the job-shop scheduling problem. Technical report, Osnabrucker Schriften zur
Mathematik, Universitat Osnabruck.

Carlier, J. and Pinson, E. (1989). An algorithm for solving the job-shop problem.
Management Science, 35(2):164-176.

Charlton, J. M. and Death, C. C. (1970). A generalized machine-scheduling algorithm.
Operational Research Quarterly, 21:127 - 134.

Cheng, C. and Smith, S. F. (1994). Generating feasible schedules under complex
metric constraints. In Proceedings of the Twelfth National Conference on Artificial
Intelligence, Seattle, Washington.

Coffman, E. G., Garey, M. R., and Johnson, D. S. (1978). An application of bin-packing
to multiprocessor scheduling. SIAM J. Comput., 7:1-17.

Dechter, R., Meiri, L., and Pearl, J. (1991). Temporal constraint networks. Artificial
Intelligence, 49:61-95.

Della Croce, F., Tadei, R., and Volta, G. (1992). A genetic algorithm for the job shop
problem. Technical report, D.A.L Politecnico di Torino, Italy.

30

Dell’Amico, M. and Trubian, M. (1991). Applying tabu-search to the job shop schedul-
ing problem. Technical report, Politecnico di Milano, Italy.

Erschler, J., Roubellat, F., and Vernhes, J. P. (1976). Finding some essential charac-
teristics of the feasible solutions for a scheduling problem. Operations Research,
24:772-782.

Erschler, J., Roubellat, F., and Vernhes, J. P. (1980). Characterizing the set of feasible
sequences for n jobs to be carried out on a single machine. European Journal of
Operational Research, 4:189-194.

Fisher, H. and Thompson, G. L. (1963). Probabilistic learning combinations of local
job-shop scheduling rules. In Industrial Scheduling. J. F. Muth, G. L. Thompson
(eds), Prentice-Hall, Englewood Cliffs, NJ.

Florian, M., Trepant, P., and McMahon, G. B. (1971). An implicit enumeration algo-
rithm for the machine sequencing problem. Management Science, 17(12):B-782~
B-792.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability, a Guide to the
Theory of NP-Completeness. W.H. Freeman Company.

Gaschnig, J. (1979). Performance measurement and analysis of certain search algo-
rithms. Technical report, Carnegie Mellon University.

Ginsberg, M. L. (1994). Dynamic backtracking. Journal of Artificial Intelligence Re-
search, 1:25-46.

Haralick, R. M. and Elliott, G. L. (1980). Consistency in networks of relations. Artificial
Intelligence, 14:263-313.

Harvey, W. D. (1994). Search and jobshop scheduling. Technical report, Computer Sci-
ence Department, Standford University, and Computational Intelligence Research
Laboratory, University of Oregon, CIRL TR 94-1.

Hefetz, H. and Adiri, I. (1982). An efficient optimal algorithm for the two machine
unit-time jobshop schedule-length problem. Mathematics of Operations Research,
7:354-360.

Hirabayashi, N., Nagasawa, H., and Nishiyama, N. (1994). A decomposition scheduling
method for operating flexible manufacturing systems. International Journal of

Production Research, 32(1):161-178.

Jackson, J. R. (1956). An extension of johnson’s results on job lot scheduling. Navel
Research Logistics Quarterly, 3:201-203.

31

Kautz, H. and Ladkin, P. B. (1991). Integrating metric and qualitative temporal rea-
soning. In Proceedings of the Ninth National Conference on Artificial Intelligence,
Anaheim, CA., pages 241-246.

Ladkin, P. B. and Maddux, R. D. (1989). On binary constraint networks. Technical
report, Kestrel Institute, Palo Alto, CA.

Lageweg, B., Lenstra, J. K., and Kan, A. H. G. R. (1977). Job-shop scheduling by
implicit enumeration. Management Science, 24(4):441 - 450.

Lawler, E. L., Lenstra, J. K., Kan, A. H. G. R., and Shmoys, D. B. (1989). Sequencing
and scheduling: Algorithms and complexity. Technical report, Report Centre
Mathematics and Computer Science, Amsterdam.

Lawrence, S. (1984). Resource constraint project scheduling: An experimental inves-
tigation of heuristic scheduling techniques. Technical report, Graduate School of
Industrial Administration, Carnegie-Mellon University.

Lei, L. and Wang, T. J. (1991). The minimum common-cycle algorithm for cyclic
scheduling of two hoists with time window constraints. Management Science,
37(12):1629-1639.

Lieberman, R. W. and Turksen, I. B. (1981). Crane scheduling problems. AIIE Trans-
actions, 13(4):304-311.

Mackworth, A. K. (1977). Consistency in networks of relations. Artificial Intelligence,
8(1):99-118.

Matsuo, H., Suh, C. J., and Sullivan, R. S. (1988). A controlled search simulated
annealing method for the general job shop scheduling problem. Technical report,
WP03-04-88, Department of Management, Graduate School of Business, Univer-
sity of Texas, Austin.

Meiri, 1. (1991). Combining qualitative and quantitative constraints in temporal rea-
soning. In Proceedings of the Ninth National Conference on Artificial Intelligence,
Anaheim, CA., pages 260-267.

Minton, S., Johnston, M. D., Philips, A. B., and Laird, P. (1992). Minimizing conflicts:
A heuristic repair method for constraint satisfaction and scheduling problems.

Artificial Intelligence, 58:161-205.

Muscettola, N. (1993). Scheduling by iterative partition of bottleneck conflicts. In
Proceedings of the Ninth IEEE Conference on Artificial Intelligence Applications,
Orlando, FL.

Nowicki, E. and Smutnicki, C. (1994). A fast taboo search algorithm for the job
shop problem. Technical report, Technical University of Wroclaw, Institute of
Engineering Cybernetics, ul. Janiszewskiego 11/17, 50-372 Wroclaw, Poland.

32

Panwalker, S. S. and Iskander, W. (1977). A survey of scheduling rules. Operations
Research, 25:45 — 61.

Phillips, L. W. and Unger, P. S. (1976). Mathematical programming solution of a hoist
scheduling problem. AIIE Transactions, 8(2):219-225.

Sadeh, N. (1991). Look-ahead techniques for micro-opportunistic job shop scheduling.
Technical report, CMU-CS-91-102, School of Computer Science, Carnegie Mellon

University.

Schrage, L. (1970). Solving resource-constrained network problems by implicit enu-
meration - nonpreemptive case. Operations Research, 18:263 — 278.

Shapiro, G. W. and Nuttle, H. L. W. (1988). Hoist scheduling for a pcb electroplating
facility. IIE Transactions, 20(2):157-167.

Smith, S. F. and Cheng, C. (1993). Slack-based heuristics for constraint satisfaction
scheduling. In Proceedings of the Eleventh National Conference on Artificial In-
telligence, Washington, DC., pages 139 — 144.

Stallman, R. M. and Sussman, G. J. (1977). Forward reasoning and dependency-
directed backtracking in a system for computer-aided circuit analysis. Artificial

Intelligence, 9(2):135-196.

Storer, R. H., Wu, S. D., and Vaccari, R. (1992). New search spaces for sequencing prob-
lems with application to job shop scheduling. Management Science, 38(10):1495

- 1509.

Taillard, E. (1989). Parallel taboo search technique for the jobshop scheduling problem.
Technical report, ORWP 89/11, Department de Mathematiques, Ecole Polytech-
nique Federale De Lausanne, Lausanne, Switzerland.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of
Operational Research, 64:278 — 285.

van Laarhoven, P. J. M., Aarts, E. H. L., and Lenstra, J. K. (1992). Job shop scheduling
by simulated annealing. Operations Research, 40(1):113 — 125.

Vilain, M. and Kautz, H. (1986). Constraint propagation algorithms for temporal rea-
soning. In Proceedings of the Fourth National Conference on Artificial Intelligence,
Philadelphia, PA., pages 377-382.

Xiong, Y., Sadeh, N., and Sycara, K. (1992). Intelligent backtracking techniques for job
shop scheduling. In Proceedings of the Third International Conference on Principle
of Knowledge Representation, Cambridge, MA.

Yih, Y. (1994). An algorithm for hoist scheduling problems. International Journal of
Productions Research, 32(3):501-516.

33

Yih, Y., Liang, T., and Moskowitz, H. (1993). Robot scheduling in a circuit board
production line: A hybrid or/ann approach. IIE Transactions, 25(2):26-33.

Yih, Y. and Thesen, A. (1991). Semi-markov decision models for real-time scheduling.
International Journal of Productions Research, 29(11):2331-2346.

Zweben, M., Deale, M., and Gargan, R. (1990). Anytimerescheduling. In Proceedings of
DARPA Workshop on Innovative Approaches to Planning, Scheduling and Control,
Morgan Kaufmann Pub.

34

Appendix A

Table 5: Makespan results for small benchmark problem set

Job x | Optimal | Multi- Multi-PCP

Problem | Machine | Value PCP w/ Relax SB1 SB3 SB4
mt06 6x6 55 55 55 59 55 55
mt10 10 x 10 930 949 949 952 981 940
mt20 20x 5 1165 1267 1192 1228 1199 1199
lal 666 666 666 666 666 666
la2 655 670 670 684 667 667
lad 10x5 597 619 617 605 626 626
lad 590 600 600 603 593 593
lab 593 533 593 593 593 593
la6 926 926 926 926 926 926
la7? 890 890 890 890 890 890
1a8 15x5 863 863 863 863 863 863
1a9 951 951 951 951 951 951
lal0 958 958 958 958 958 958
lall 1222 1222 1222 1222 1222 1222
lal2 1039 1039 1039 1039 1039 1039
lal3 20x 5 1150 1150 1150 1150 1150 1150
lal4 1292 1292 1292 1292 1292 1292
lalh 1207 1207 1207 1207 1207 1207
lal6 945 982 982 1076 961 961
lal7 784 787 787 829 796 796
lal8 10 x 10 848 886 886 855 866 861
la19 842 852 852 863 902 878
1a20 902 922 922 918 932 922
la22 927 984 965 968 954 954
la23 15x 10 1032 1041 1041 1071 1032 1032
la24 935 983 983 1015 976 976
la25 977 1026 1026 1061 1012 1012
1a26 1218 1272 1272 1393 1239 1224
la28 20x 10 1216 1275 1275 1281 1245 1245
1a30 1355 1356 1356 1355 1355 1355
la31 1784 1784 1784 1784 1784 1784
1a32 1850 1850 1850 1850 1850 1850
1a33 30x 10 1719 1722 1722 1719 1719 1719
la34 1721 1744 1744 1721 1721 1721
1a35 1888 1888 1888 1888 1888 1888
1a36 1268 1321 1321 1326 1319 1319
la37 15 x 15 1397 1446 1466 1471 1425 1425
la39 1233 1286 1286 1301 1278 1278
la40 1233 1272 1272 1347 1266 1262

36

Table 6: % deviation from optimal solution for small benchmark problem set

Job x Multi- Multi-PCP
Problem | Machine | PCP w/ Relax ~ SB1 SB3 SB4
mt06 6x6 0 0 7.27 0 0
mt10 10x 10 | 2.04 2.04 237 548 1.08
mt20 20 x5 8.76 2.32 541 292 292
lal 0 0 0 0 0
la2 2.29 2.29 443 1.83 1.83
la3 10x5 3.69 3.35 1.34 4.86 4.86
lad 1.69 1.69 220 051 051
lab 0 0 0 0 0
ia6 0 0 0 0 0
la7? 0 0 0 0 0
1a8 15x5 0 0 0 0 0
1a9 0 0 0 0 0
la10 0 0 0 0 0
lall 0 0 0 0 0
lal2 0 0 0 0 0
1al3 20x 5 0 0 0 0 0
lal4 0 0 0 0 0
lal5 0 0 0 0 0
lal6 3.92 3.92 13.86 1.69 1.69
lal7 0.38 0.38 574 153 1.53
1al8 10x 10 4.48 4.48 0.83 2.12 1.53
lal9 1.19 1.19 249 7.13 4.28
1a20 2.22 2.22 1.77 3.33 2.22
1a22 6.15 4.10 442 291 2091
1la23 15x 10 0.87 0.87 3.78 0 0
la24 5.13 5.13 8.56 439 4.39
la25 5.02 5.02 8.60 3.58 3.58
la26 4.43 4.43 14.37 1.72 049
1a28 20x 10 | 4.85 4.85 535 2.38 2.38
1a30 0.07 0.07 0 0 0
la31 0 0 0 0 0
1a32 0 0 0 0 0
1a33 30x 10 | 017 0.17 0 0 0
1a34 1.34 1.34 0 0 0
la35 0 0 0 0 0
la36 4.18 4.18 457 4.02 4.02
1a37 15 x 15 4.94 4.49 5.30 2.00 2.00
1a39 4.30 4.30 552 3.65 3.65
la40 3.16 3.16 9.25 268 235

37

Table 7: Computation times (in seconds) for small benchmark problem set

Job x Multi-

Problem { Machine | PCP SB1 SB3 SB4
mt06 6x6 0.065 0.12 078 145
mt10 10 x 10 0.38 072 2.21 7.76
mt20 20 x5 1.38 028 199 3.62

lal 0.05 0.12 0.08 0.13
la2 0.23 0.13 051 0.81
la3 10x5 0.17 0.10 0.43 0.68
lad 0.19 0.11 037 0.63
lab 0.02 0.13 061 0.61
la6 0.03 0.15 0.09 0.09
la7 0.53 0.17 0.11 0.11
la8 15x5 048 0.18 0.20 0.20
la9 0.065 0.12 0.11 0.11
lal0 002 0.15 0.10 0.10
lall 0.03 0.18 0.19 0.19
lal2 0.03 012 0.12 0.12
lal3 20x 5 0.06 0.18 0.13 0.13
lal4d 0.03 0.13 0.09 0.09
lalb 0.20 020 0.18 0.18
1al6 0.27 048 1.34 3.59
lal7 0.25 0.65 1.57 2.97
lal8 10 x 10 0.23 062 174 3.05
lal9 0.30 0.78 167 3.30
1a20 0.23 080 1.71 3.09
1a22 1.15 1.10 3.59 6.52
1a23 15x 10 1.10 1.28 1.99 1.99
1a24 0.95 140 392 T7.19
la25 097 1.00 415 7.25
1a26 2.55 1.33 455 10.77
1a28 20 x 10 237 1.83 571 1041
1a30 262 167 133 1.33
la31 5.77 3.04 345 3.45
1232 0.12 2.38 2.74 2.74
la33 30 x 10 8.42 1.67 463 4.63
la34 863 3.04 699 6.99
la35 1.30 277 2.8 2.86
1a36 1.08 4.07 14.01 28.14
la37 15 x 15 1.23 2.93 13.22 26.84
1a39 1.47 5.78 12.84 25.59
la40 1.37 5.40 13.30 26.58

38

Table 8: Makespan results for large benchmark problem set

Job x Best | Multi- Multi-PCP Job x Best | Multi- Multi-PCP
* Machine | Value | PCP w/ Relax SB1 | Machine | Value | PCP w/ Relax _ SBI
1231* | 1280 1280 1360 2064 | 2323 2323 2343
1252 | 1322 1308 1367 1983 | 2205 2205 2199
. 1223 | 1288 1288 1289 1896 | 2165 2165 2123
1181 | 1260 1253 1289 2031 | 2269 2252 2393
15x15 | 1234 1306 1306 1359 | 30x 20 | 2032 2215 2215 2262
1243 1320 1320 1314 2057 2269 2269 2329
1228 | 1307 1307 1322 1947 | 2104 2104 2202
1221 | 1289 1289 1345 2005 | 2277 2277 2191
1289 | 1366 1366 1437 2013 | 2337 2330 2270
1261 | 1334 1334 1331 1973 | 2188 2188 2301
1376 | 1522 1488 1481 2760* | 2948 29048 2853
1381 | 1495 1495 1503 2756* | 2976 2964 2806
1367 1478 1478 1521 2717*% | 2898 2891 2761
1355 | 1452 1452 1540 2839*% | 2905 2905 2839
20x 15 | 1366 | 1486 1486 1532 | 50x 15 | 2689 | 2944 2944 -
1371 1478 1478 1511 2781*% | 3023 3023 2924
1480 | 1609 1609 1605 2943* | 3178 3156 2987
1432 | 1503 1503 1532 2885* | 3131 3131 2969
1361 | 1440 1440 1504 2655* | 2943 2038 2755
1373 1441 1441 1535 2723% | 2904 2904 2828
1663 1764 1764 1814 2921 3177 3177 3098
1626 1739 1739 1776 3002 3311 3244 3237
1574 | 1729 1687 1822 2835 | 3059 3047 2978
1660 1773 1773 1822 2775 2982 2951 2879
20x 20 | 1598 | 1742 1742 1847 | 50 x 20 | 2800 | 3061 3061 2978
1679 | 1759 1759 1861 2914 | 3188 3187 3089
1704 | 1862 1862 1857 2895 | 3165 3165 3105
1626 1749 1749 1809 2835 3048 3048 2918
1635 1761 1761 1771 3097 3419 3419 -
1614 1743 1743 1729 3075 3349 3349 3163
1770 2015 2001 2017 5464* | 5804 5804 -
1853 | 2033 2019 2061 5181* | 5378 5378 -
1855 | 2053 2053 1987 5568* | 5885 5885 -
1851 | 2071 2071 1996 5339* | 5553 5553 -
30 x 15 | 2007 | 2106 2106 1965 | 100 x 20 | 5392* | 5743 5743 -
< 1844 | 2031 2016 1965 5342% | 5733 5733 -
1822 | 1954 1954 1976 5436* | 5621 5621 -
1714 1853 1853 1915 5394* | 5618 5618 -
t 1824 | 2010 2010 1890 5358* | 5563 5563 -
1723 | 1931 1931 1838 5213 | 5413 5413 -

* These indicate optimal values.

39

Table 9: % deviation from best solution for large benchmark problem set

Job x Multi- Multi-PCP Job x Multi- Multi-PCP
Machine | PCP w/ Relax ~ SB1 | Machine { PCP w/ Relax SB1
3.98 3.98 10.48 12.55 12.55 13.52
5.59 4.47 9.19 11.20 11.20 10.89
5.31 5.31 10.55 14.19 14.19 11.97
6.69 6.10 9.14 11.72 10.88 17.77
15x 15 5.83 5.83 10.13 | 30x 20 9.01 9.01 11.32
6.19 6.19 5.71 10.31 10.31 13.22
6.43 6.43 7.65 8.06 8.06 13.10
5.57 5.57 10.16 13.57 13.57 9.28
5.97 5.97 11.48 16.10 15.75 12.77
5.79 5.79 5.55 10.90 10.90 16.62
10.61 8.14 7.63 6.81 6.81 3.37
8.25 8.25 8.83 7.98 7.55 1.81
8.12 8.12 11.27 6.66 6.40 1.62
7.16 7.16 13.65 2.32 2.32 0.00
20 x 15 8.78 8.78 13.65 | 50x 15 9.48 9.48 -
7.80 7.80 10.21 8.70 8.70 5.14
8.72 8.72 8.45 ‘ 7.99 7.24 1.50
4.96 4.96 6.98 8.53 8.53 2.91
5.80 5.80 10.51 10.85 10.66 3.77
4.95 4.95 11.80 6.65 6.65 3.86
6.07 6.07 9.08 8.76 8.76 6.06
6.95 6.95 9.23 10.29 8.06 7.83
9.85 7.18 9.59 7.90 7.48 4.97
6.81 6.81 9.76 7.46 6.34 3.75
20 x 20 9.01 9.01 15.58 | 50 x 20 9.32 9.32 6.36
4.76 4.76 10.84 9.40 9.37 6.01
9.27 9.27 8.98 9.33 9.33 7.25
7.56 7.56 11.25 7.51 7.51 2.93
7.71 771 8.32 10.40 10.40 -
7.99 7.99 7.13 8.91 8.91 2.86
13.84 13.05 13.95 6.22 6.22 -
9.71 8.96 11.23 3.80 3.80 -
10.67 10.67 7.12 5.69 5.69 -
11.89 11.89 7.83 4.01 4.01 -
30 x 15 4.93 4.93 6.63] 100x 20 | 6.51 6.51 -
10.14 9.33 6.56 732 7.32 -
7.24 7.24 8.45 3.40 3.40 -
8.11 8.11 11.73 4.15 4.15 -
10.20 10.20 3.62 3.83 3.83 -
12.07 12.07 6.67 3.84 3.84 -

40

Table 10: Computation times (in seconds) for large benchmark problem set

Job x Multi- Job x Multi-

Machine | PCP SB1 | Machine | PCP SB1
1.15 4.08 14.65 28.32
1.18 5.88 14.05 37.95
1.17 6.48 15.67 35.42
1.13 4.52 16.32 28.97

15x 15 1.33 322 | 30x20 | 14.85 34.05
1.20 5.05 16.52 32.73
1.17 3.37 15.87 34.70
1.27 65.88 15.60 30.47
1.33 6.93 15.68 28.30
1.10 4.55 15.90 24.92
3.53 7.98 73.88 269.91
3.05 9.62 72.20 139.21
3.15 6.65 66.68 316.89
3.18 6.20 72.46 47.40

20 x 15 3.67 8.42 | 50x 15 | 64.68 -
3.32 6.97 50.43 46.26
3.63 7.77 70.48 37.30
4.10 7.77 75.31 175.06
3.54 8.43 68.66 49.80
3.06 6.48 66.28 190.11
3.40 11.62 93.43 125.86
432 18.48 91.43 150.18
3.40 15.92 89.01 251.82
3.77 13.90 90.74 98.21

20 x 20 3.78 13.75 | 50 x 20 | 103.90 382.80
3.80 13.78 105.43 90.95
4.05 13.52 95.35 97.71
3.77 15.53 100.61 145.39
3.22 19.73 91.33 -
3.83 20.20 87.72 149.58
12.28 12.45 944.45 -
12.54 15.97 832.63 -
10.98 14.32 870.70 -
11.95 12.11 798.67 -

30x 15 | 10.00 14.17 | 100 x 20 | 865.13 -
12.59 16.20 846.10 -
11.60 15.72 836.57 -
12.77 17.68 864.87 -
12.43 14.15 877.18 -
11.82 14.02 837.33 -

